Wireless Network Access Point

Use this guide to install: WAP11 ver. 2.2

COPYRIGHT & TRADEMARKS

Copyright © 2002 Linksys, All Rights Reserved. Instant Wireless™ is a registered trademark of Linksys. Microsoft, Windows, and the Windows logo are registered trademarks of Microsoft Corporation. All other trademarks and brand names are the property of their respective proprietors.

LIMITED WARRANTY

Linksys guarantees that every Wireless Network Access Point is free from physical defects in material and workmanship under normal use for one year from the date of purchase. If the product proves defective during this warranty period, call Linksys Technical Support in order to obtain a Return Authorization Number. BE SURE TO HAVE YOUR PROOF OF PURCHASE AND A BARCODE FROM THE PRODUCT'S PACKAGING ON HAND WHEN CALLING. RETURN REQUESTS CANNOT BE PROCESSED WITHOUT PROOF OF PURCHASE. When returning a product, mark the Return Authorization Number clearly on the outside of the package and include a copy of your original proof of purchase. All customers located outside of the United States of America and Canada shall be held responsible for shipping and handling charges.

IN NO EVENT SHALL LINKSYS' LIABILITY EXCEED THE PRICE PAID FOR THE PRODUCT FROM DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OF THE PRODUCT, ITS ACCOMPANYING SOFTWARE, OR ITS DOCUMENTATION. LINKSYS DOES NOT OFFER REFUNDS FOR ANY PRODUCT. Linksys makes no warranty or representation, expressed, implied, or statutory, with respect to its products or the contents or use of this documentation and all accompanying software, and specifically disclaims its quality, performance, merchantability, or fitness for any particular purpose. Linksys reserves the right to revise or update its products, software, or documentation without obligation to notify any individual or entity. Please direct all inquiries to:

Linksys P.O. Box 18558, Irvine, CA 92623.

FCC STATEMENT

This product has been tested and complies with the specifications for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used according to the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which is found by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna
- Increase the separation between the equipment or devices
- Connect the equipment to an outlet other than the receiver's
- Consult a dealer or an experienced radio/TV technician for assistance

FCC Radiation Exposure Statement

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator and your body.

UG-WAP11 ver. 2.2-081402C KL

INDUSTRY CANADA (CANADA)

This Class B digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada.

The use of this device in a system operating either partially or completely outdoors may require the user to obtain a license for the system according to the Canadian regulations.

EC DECLARATION OF CONFORMITY (EUROPE)

Linksys Group declares that the Instant Wireless™ Series products included in the Instant Wireless™ Series conform to the specifications listed below, following the provisions of the EMC Directive 89/336/EEC and Low Voltage Directive 73/23/EEC:

ETS 300-826, 301 489-1 General EMC requirements for Radio equipment. EN 609 50 Safety

ETS 300-328-2 Technical requirements for Radio equipment.

Note: This equipment is intended to be used in all EU and EFTA countries. Outdoor use may be restricted to certain frequencies and/or may require a license for operation. For more details, contact Linksys Corporate Compliance.

Note: Combinations of power levels and antennas resulting in a radiated power level of above 100 mW are considered as not compliant with the above mentioned directive and are not allowed for use within the European community and countries that have adopted the European R&TTE directive 1999/5/EC and/or the CEPT recommendation Rec 70.03. For more details on legal combinations of power levels and antennas, contact Linksys Corporate Compliance.

Linksys Group™ vakuuttaa täten että Instant Wireless IEEE 802.11 PC Card tyyppinen laite on direktiivin 1999/5/EY, direktiivin 89/336/EEC ja direktiivin 73/23/EEC oleellisten vaatimusten ja sitä koskevien näiden direktiivien muiden ehtojen mukainen.

Linksys Group™ déclare que la carte PC Instant Wireless IEEE 802.11 est conforme aux conditions essentielles et aux dispositions relatives à la directive 1999/5/EC, la directive 89/336/EEC, et à la directive 73/23/EEC.

Belgique B L'utilisation en extérieur est autorisé sur le canal 11 (2462 MHz), 12 (2467 MHz), et 13 (2472 MHz).

Dans le cas d'une utilisation privée, à l'extérieur d'un bâtiment, au-dessus d'un espace public, aucun enregistrement n'est nécessaire pour une distance de moins de 300m. Pour une distance supérieure à 300m un enregistrement auprès de l'IBPT est requise. Pour une utilisation publique à l'extérieur de bâtiments, une licence de l'IBPT est requise. Pour les enregistrements et licences, veuillez contacter l'IBPT.

France F: Bande de fréquence restreinte: seuls les canaux 10, 11, 12, 13 (2457, 2462, 2467, et 2472 MHz respectivement) doivent être utilisés en France.

Toute utilisation, qu'elle soit intérieure ou extérieure, est soumise à autorisation. Vous pouvez contacter l'Autorité de Régulation des Télécommuniations

(<http://www.art-telecom.fr>) pour la procédure à suivre.

France F: Restricted frequency band: only channels 10, 11, 12, 13 (2457, 2462, 2467, and 2472 MHz respectively) may be used in France. License required for every indoor and outdoor installations. Please contact ART for procedure to follow.

Deutschland D: Anmeldung im Outdoor-Bereich notwending, aber nicht genehmiqungspflichtig. Bitte mit Händler die Vorgehensweise abstimmen.

Germany D: License required for outdoor installations. Check with reseller for procedure to follow

Italia I: E' necessaria la concessione ministeriale anche per l'uso interno. Verificare con i rivenditori la procedura da seguire. L'uso per installazione in esterni non e' permessa.

Italy I: License required for indoor use. Use with outdoor installations not allowed.

the Netherlands NL License required for outdoor installations. Check with reseller for procedure to follow.

Nederlands NL Licentie verplicht voor gebruik met buitenantennes. Neem contact op met verkoper voor juiste procedure

Wireless Network Access Point

Table of Contents

Chapter 1: Introduction	1
The Instant Wireless™ Network Access Point	1
Features	1
Package Contents	2
System Requirements	2
Chapter 2: Planning Your Wireless Network	3
Network Topology	3
Roaming	3
Chapter 3: Getting to Know the Wireless Network Access Point	4
The Wireless Network Access Point's Ports	4
The Wireless Network Access Point's LEDs	5
Chapter 4: Connecting the Wireless Network Access Point	6
Chapter 5: Setting Up the Wireless Network Access Point	7
Chapter 6: Configuring the Wireless Network Access Point	14
The Setup Tab	14
The Password Tab	19
The Status Tab	20
The Help Tab	22
The Filter Tab	23
The Wireless Tab	25
Appendix A: Troubleshooting	28
Frequently Asked Questions	28
Appendix B: Setting Up the TCP/IP Protocol	32
Setting Up TCP/IP in Windows	32
TCP/IP Setup for Windows 95, 98, and Millennium	33
TCP/IP Setup for Windows NT 4.0	34
TCP/IP Setup for Windows 2000	35
Appendix C: Glossary	36

Instant	Wir _₽	Locc™	Sprips

Appendix D: Specifications Environmental	44 45
Appendix E: Warranty Information	46
Appendix F: Contact Information	47

Wireless Network Access Point

Chapter 1: Introduction

The Instant Wireless™ Network Access Point

Don't be bound by cabling restrictions any longer! The Instant WirelessTM Network Access Point from Linksys delivers the freedom to configure your network *your* way. Utilization of state-of-the-art wireless technology gives you the ability to set up workstations in ways you never thought possible; no cables to install means fewer expenses and fewer hassles.

The Instant WirelessTM Network Access Point's high-powered antennae offer a range of operation of up to 1500 feet, providing seamless roaming throughout your LAN infrastructure. Advanced user authentication ensures a high level of security for wireless networking, while easy-to-use Windows-based diagnostics and statistics tools ensure that you'll always be in control. Best of all, the Instant WirelessTM Network Access Point features easy installation—just plug it in and you're ready to go!

When all these features come together in one compact, lightweight, and power-efficient unit, you have the ultimate in flexible networking—the Linksys Instant WirelessTM Network Access Point.

Features

- Highly Efficient Dipole Antennae Provide Extensive Range of Operation
- Enjoy Your Wireless Office Beyond the Range of Ethernet Networking
- Auto Fall-Back Data Rate for Long-Distance Communication and Noisy Environments
- High-Speed Data Transfer Rate Up to 11 Mbps
- Interoperable with IEEE 802.11b (DSSS) 2.4GHz-Compliant Equipment
- Features Roaming and Network Traffic Filtering
- Extensive Operating Range Supports up to 300 ft. (Indoors) and 500 feet (Outdoors)
- Up to 256-Bit Wired Equivalent Privacy Supported
- Free Software Driver Upgrades
- Compatible with Virtually All Major Operating Systems
- Free Technical Support—24 Hours a Day, 7 Days a Week for North America Only
- 1-Year Limited Warranty

1

Figure 1-1

Package Contents

- One Instant Wireless[™] Wireless Network Access Point
- One AC Power Adapter
- One Setup Wizard CD-ROM (with User Guide)
- Two Detachable Antennae
- One Quick Installation and Registration Card (not shown)
- One CAT 5 Ethernet Cable (not shown)

System Requirements

- A Windows 95, 98, Millennium, NT version 4.0, 2000, or XP PC
- Internet Explorer ver. 4.0 or higher
- One CD-ROM Drive

Chapter 2: Planning Your Wireless Network

Network Topology

A wireless LAN is a group of computers, each equipped with one Instant WirelessTM Series adapter. Computers in a wireless LAN must be configured to share the same radio channel.

The Instant WirelessTM Series adapters provide access to a wired LAN for wireless workstations. An integrated wireless and wired LAN is called an Infrastructure configuration. A group of Instant WirelessTM Series adapter users and an Instant WirelessTM Wireless Network Access Point compose a Basic Service Set (BSS). Each Instant WirelessTM Series adapter PC in a BSS can talk to any computer in a wired LAN infrastructure via the Instant WirelessTM Wireless Network Access Point.

An infrastructure configuration extends the accessibility of an Instant WirelessTM Series adapter PC to a wired LAN, and doubles the effective wireless transmission range for two Instant WirelessTM Series adapter PCs. Since the Wireless Network Access Point is able to forward data within its BSS, the effective transmission range in an infrastructure LAN is doubled.

Roaming

Infrastructure mode also supports roaming capabilities for mobile users. More than one BSS can be configured as an Extended Service Set (ESS). This continuous network allows users to roam freely. All PCs equipped with an Instant WirelessTM Series adapter must be configured with the same SSID and use the same radio channel.

Before enabling a network with roaming capability, choosing a feasible radio channel and optimum Wireless Network Access Point position is recommended. Proper Wireless Network Access Point positioning combined with a clear radio signal will greatly enhance performance.

Chapter 3: Getting to Know the Wireless Network Access Point

The Wireless Network Access Point's Ports

The Access Point's ports, where a network cable is connected, are located on the Access Point's rear panel.

Figure 3-1

Dipole Antenna Connectors

These two round connections are where the antennae are connected to the Access Point.

LAN

This **LAN** (Local Area Network) port connects to Ethernet network devices, such as a hub, switch, or router.

Power

The **Power** port is where you will connect the power adapter.

Reset Button

There are two ways to Reset the Access Point's factory defaults. Briefly press the Reset Button for approximately ten seconds, or use the Password tab of the Access Point's Web-Based Utility.

Important: Resetting the Access Point will erase all of your settings (WEP Encryption, Wireless and LAN settings, etc.) and replace them with the factory defaults.

The Wireless Network Access Point's LEDs

Figure 3-2

Power Red. The **Power** LED lights up when the Access Point is

powered on.

ACT Green. If the LED is flickering, the Access Point is actively

sending or receiving data to or from one of the devices on the

network.

LINK Amber. The **LINK** LED serves two purposes. If the LED is

continuously lit up, the Access Point is successfully connected to a device through the LAN port. If the LED is flicker-

ing, it is an indication of any network activity.

Chapter 4: Connecting the Wireless Network Access Point

- 1. **Locate an optimum location for the Access Point.** The best place for the Access Point is usually at the center of your wireless network, with line of sight to all of your mobile stations.
- 2. Fix the direction of the antenna. Try to place it in a position which can best cover your wireless network. Normally, the higher you place the antenna, the better the performance will be. The antenna's position enhances the receiving sensitivity. Both antennae should be perpendicular to the ground and parallel to each other.
- 3. **Connect a standard Ethernet network cable to the Access Point.** Then, connect the other end of the Ethernet cable to a switch or hub. The Access Point will then be connected to your 10/100 Network.
- 4. Connect the AC Power Adapter to the Access Point's Power Socket. Only use the power adapter supplied with the Access Point. Use of a different adapter may result in product damage.

Now that the hardware installation is complete, proceed to **Chapter 5: Setting Up the Wireless Network Access Point** for directions on how to setup the Access Point.

Note: In order for all other wireless devices to communicate with the Access Point, those devices must be operating in the **Infrastructure Mode**. If any wireless devices are configured in the **Ad Hoc Mode**, they *will not* be recognized by the Access Point.

Chapter 5: Setting Up the Wireless Network Access Point

Have You: Connected the Access Point to a hub, switch or router on your wired network as shown in Chapter 4: Connecting the

Now that you've connected the Access Point to your wired network, you are ready to begin setting it up. This Setup Wizard will take you through all the steps necessary to get the Access Point connecting your wireless network to your wired network and communicating more efficiently.

Note: While the Access Point has been designed to work correctly right out of the box, setting it up on a wireless computer will require you to use the Linksys default settings. These settings can then be changed with the Web-based Browser Utility.

- 1. Insert the Setup Wizard CD into your PC's CD-ROM drive. Optimally, your PC should be on your wired network.
- 2. The screen in Figure 5-1 should appear on your monitor. If it does not, this means the autorun is not functioning. Start the autorun manually by clicking the **Start** button, selecting **Run**, and typing **d:\setup.exe** (where "D" is your PC's CD-ROM drive). Click the **Setup** button to continue this Setup Wizard. Clicking the **User Guide** button opened this User Guide. To access the Linksys web site on an active Internet connection, click the **Linksys Web** button or to exit this Setup Wizard, click the **Exit** button.

6 7

Figure 5-1

3. The following screen, shown in Figure 5-2, displays how there are two ways to configure the Access Point in this Setup Wizard. Optimally, you should perform this setup through a PC on your wired network. You can also set up the Access Point through one of the PCs on your wireless network. Click the **Next** button to continue or **Exit** to exit the Setup Wizard.

Figure 5-2

4. The next screen to appear, shown in Figure 5-3, will display a list of access points on your network along with the status information for each access point. If this is the only access point on your network, it will be the only one displayed. If there are more than one displayed, select the Access Point by clicking on it and click the Yes button to continue or No to exit the Setup Wizard.

Figure 5-3

- 5. As shown in Figure 5-4, the Basic Settings screen will now appear. Enter your wireless network's SSID, select the channel at which the network broadcasts its wireless signal, and enter a unique access point name for the Access Point. Then, click the **Next** button to continue or **Back** to previous page.
 - **SSID.** The SSID is the unique name shared among all points in a wireless network. The SSID must be identical for all points in the wireless network. It is case sensitive and must not exceed 32 characters, which may be any keyboard character. Make sure this setting is the same for all points in your wireless network.
 - Channel. Select the appropriate channel from the list provided to correspond with your network settings, between 1 and 11 (in North America). All points in your wireless network must use the same channel in order to function correctly.

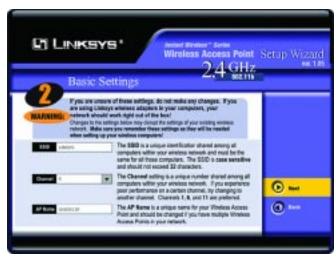


Figure 5-4

- Access Point Name. You may assign any name to the Access Point. Unique, memorable names are helpful, especially if you are employing multiple access points on the same network.
- 6. As shown in Figure 5-5, the IP Settings screen will appear next. Unless your network has a DHCP server, you will want to click the radio button beside Set IP Address Manually to select this option. Enter an IP Address and IP Mask appropriate to your network. Then, click the **Next** button to continue or **Back** to previous page.

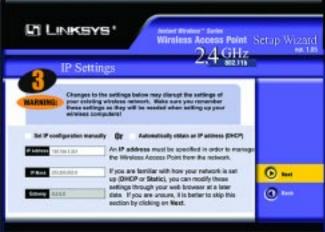


Figure 5-5

- **IP Address**. This IP address must be unique to your network. (The default IP address of 192.168.1.251.) As this is a private IP address, there is no need to purchase a separate IP address from your service provider.
- IP Mask. The Access Point's IP Mask (also known as a Subnet Mask) must be the same as your Ethernet network.
- Gateway. This setting only appears when the DHCP, Automatically obtain an IP Address, option is enabled; it indicates the status of the gateway and is not user-adjustable.
- 7. The Security Settings screen (Figure 5-6) will appear next. From this screen, you will set the Wired Equivalent Privacy (WEP) encryption for your wired network. Select a WEP configuration method and a passphrase. Then, click the **Next** button to continue or **Back** to previous page.

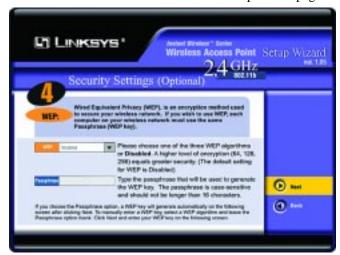


Figure 5-6

• WEP (Disable/64-bit WEP/128-bit WEP/256-bit WEP). In order to utilize WEP encryption, select the WEP setting from the pull-down menu. If you do not wish to utilize WEP encryption, make sure Disable is selected. The Access Point's WEP encryption is unique to Linksys and may conflict with other vendors' WEP encryption.

- Passphrase. This is the code used when logging a wireless device onto the wireless network. It is a text string with a maximum of 16 alphanumeric characters. The WEP Key Settings are based upon the Passphrase determined by you. Type that here. This passphrase may not work with non-Linksys products due to possible incompatibility with other vendors' passphrase generators.
- 8. The following Security Settings screen, shown in Figure 5-7, will allow you to enter your WEP key. Each point in your wireless network must use the same WEP key for the network to function properly. Verify that the appropriate key is entered and click the **Next** button to continue or **Back** to previous page.

Figure 5-7

9. The next screen (Figure 5-8) will allow you to review your settings. If these settings are correct, click the **Yes** button to save these settings. If there are any problems with the settings, click the **No** button and you will return to the screen shown in Figure 5-2.

Figure 5-8

10. At this point, the configuration performed with the Setup Wizard is complete, as shown in Figure 5-9. To configure any other Access Points in your network, you can run this Setup Wizard again. Click the **Exit** button to exit the Setup Wizard.

Figure 5-9

Chapter 6: Configuring the Wireless Network Access Point

Note: The Access Point is designed to function properly after using the Setup Wizard. This chapter is provided solely for those who wish to perform more advanced configuration or monitoring.

The Access Point has been designed to be functional right out of the box, with the default settings in the Setup Wizard. However, if you'd like to change these settings, the Access Point can be configured through your web browser with the Web-Based Utility. This chapter explains how to configure the Access Point in this manner.

Open your web browser and type the IP Address vou entered in the Setup Wizard. Press the **Enter** key and the following screen, shown in Figure 6-1, will appear. Leave the User Name field blank. The first time you open the Web-Based Utility, use the default password admin. You can set a new password on the screen shown in Figure 6-7.

Figure 6-1

The Setup Tab

The first screen that appears, shown in Figure 6-2, is the "Setup" tab. This allows you to change the Access Point's general settings. Change these settings as described here and click the **Apply** button to apply your changes or **Cancel** to cancel your changes. If you require online help, click the **Help** button.

Access Point Name. You may assign any name to the Access Point.
Unique, memorable names are helpful, especially if you are employing
multiple access points on the same network. Verify this is the name you
wish to use and click the Apply button to set it.

- **Obtain an IP Address Automatically.** Click this radio button to allow the Access Point to obtain a dynamic IP address from a DHCP server.
- **Specify an IP Address.** This IP address must be unique to your network. We suggest you use the default IP address of 192.168.1.251. As this is a private IP address, there is no need to purchase a separate IP address from your service provider. Verify the address and click the **Apply** button to save changes.
- Subnet Mask. The Access Point's Subnet Mask (or IP Mask) must be the same as your Ethernet network. Verify this is correct and click the Apply button to set it.
- **Gateway.** This setting only appears when the DHCP client is enabled and the IP Address is obtained automatically. It indicates the status of the gateway and is not user-adjustable.

Figure 6-2

- **SSID.** The SSID is the unique name shared among all points in a wireless network. The SSID must be identical for all points in the wireless network. It is case sensitive and must not exceed 32 alphanumeric characters, which may be any keyboard character. Make sure this setting is the same for all points in your wireless network.
- Channel. Select the appropriate channel from the list provided to correspond with your network settings, between 1 and 11 (in North America). All points in your wireless network must use the same channel in order to function correctly.
- **WEP**. The WEP Encryption method is **Disabled** by default. To enable WEP, or make it mandatory, click the **WEP Key Setting** button.

Clicking the **Backup** button will store the Access Point's configuration to your PC's hard drive. You can restore this information by clicking the **Restore** button.

Click the **Apply** button to apply your changes or **Cancel** to cancel your changes. If you require online help, click the **Help** button.

SETTING WEP ENCRYPTION:

Setting WEP Encryption through the Web-based Browser Utility is done by clicking the **WEP Key Setting** button on the Setup Screen as shown in Figure 6-2.

Figure 6-3

A screen will pop up, asking you to confirm the WEP change to mandatory, as shown in Figure 6-3. Click the **OK** button to enable WEP Encryption or **Cancel** to return to the Setup Screen.

This will open the WEP Key Setting screen, Figure 6-4. From this screen, you can select the type of WEP encryption to use as well as set the Passphrase for that encryption.

From the pull-down menu at the top of the screen, select 64-bit, 128-bit, or 256-bit encryption.

Important: Always remember that each point in your wireless network MUST use the same WEP Encryption method and encryption key or your wireless network will not function properly.

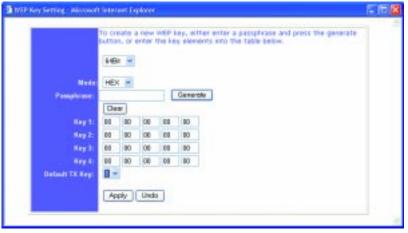


Figure 6-4

The Mode pull-down menu will allow you to set the Passphrase in Hexadecimal or ASCII characters. Hexadecimal characters on your keyboard are the letters "A" through "F" and the numbers "0" through "9", while ASCII characters are any character on your keyboard.

There are two ways to create WEP Encryption keys. The first method is by typing a Passphrase into that field and clicking the Generate button. This will generate WEP Encryption keys based upon that passphrase. A second method is to type the WEP Encryption key in the available fields manually.

SETTING THE AP MODE:

The Access Point offers four modes of operation: Access Point, Access Point Client, Wireless Bridge, and Wireless Bridge Point to MultiPoint. For all bridging modes, make sure the channel, SSID, and WEP keys are the same.

- Access Point The Operational Mode is set to Access Point by default.
 This connects your wireless PCs to a wired network. In most cases, no change is necessary.
- Access Point Client When set to Access Point Client mode, the Access Point
 Client is able to talk to one remote access point within its range. This mode
 allows the Access Point Client to act as a client of a remote access point. The
 Access Point Client cannot communicate directly with any wireless clients. A
 separate network attached to the Access Point Client can then be wirelessly
 bridged to the remote access point. Enter the required LAN MAC address of the
 remote access point.

 Wireless Bridge - If you are trying to make a wireless connection between two wired networks, as shown in Figure 6-5, select Wireless Bridge. This mode connects two physically separated LAN segments with two Access Points.

To configure a Wireless Bridge environment, click **Wireless Bridge** and enter the **Remote Bridge LAN MAC Address** of the remote Access Point. The remote Access Point also needs to be set up as a Wireless Bridge.

Note: All devices on each wired network must be connected through a hub or switch.

Note: In Wireless Bridge mode, the Access Point can **ONLY** be accessed by another access point in Wireless Bridge mode. In order for your other wireless devices to access the Access Point, you must reset it to Access Point mode. The two modes are mutually exclusive.

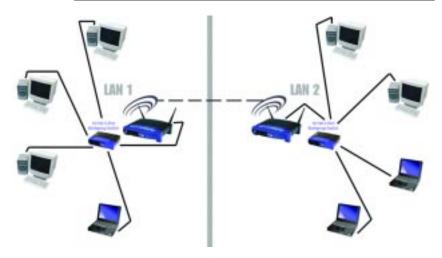


Figure 6-5

Wireless Bridge Point to MultiPoint- If you are trying to make a wireless
connection between more than two wired networks, as shown in Figure 66, select Wireless Bridge Point to MultiPoint. This mode allows you to
construct a network that has multiple Access Points bridging wirelessly.

To configure a Wireless Bridge Point to MultiPoint environment, click **Wireless Bridge Point to MultiPoint** for the Access Point used in LAN 1. No MAC Address binding is needed. Then, set the Access Points in LAN 2 and LAN 3 to Point to Point, and have them look for the MAC Address of

Only one of the Access Points must be in Point to MultiPoint mode. For all other bridged Access Points, select the **Point to Point** option, and enter the **Remote LAN MAC Address** of the Access Point set to Point to MultiPoint.

Note: Linksys recommends bridging no more than three remote LANs in Wireless Bridge Point to MultiPoint mode. Bridging additional remote LANs will result in a significant decrease in bandwidth.

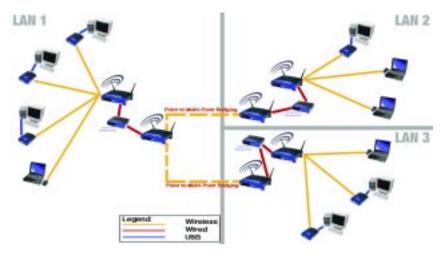


Figure 6-6

Click the **Apply** button to apply your changes or **Cancel** to cancel your changes. If you require online help, click the **Help** button.

The Password Tab

The "Password" tab, shown in Figure 6-7, allows you to change the Access Point's password and restore factory defaults.

Changing the sign-on password for the Access Point is as easy as typing the password into the **AP Password** field. Then, type it again into the second field to confirm.

To restore the Access Point's factory default settings, click the **Yes** button beside **Restore Factory Defaults**.

Important: Restoring the Access Point's factory defaults will erase all of your settings (WEP Encryption, Wireless and LAN settings, etc.), replacing them with the factory defaults. Do not reset the Access Point if you want to retain these settings

Figure 6-7

Click the **Apply** button to apply your changes or **Cancel** to cancel your changes. If you require online help, click the **Help** button.

The Status Tab

The "Status" tab, shown in Figure 6-8, will display current information on the Access Point, its settings and performance.

- **Firmware Version.** This displays the current version of the Access Point's firmware. Firmware should only be upgraded if you experience problems with the Access Point and can be upgraded from the Help tab.
- IP Address. This IP address is the unique address to your network.
- **Subnet Mask**. The Access Point's Subnet Mask (also known as a IP Mask), which is the same as your Ethernet network.
- Gateway. This setting indicated the Network's Gateway mask, only applicable when DHCP is enabled.
- Send and Recv. The Send and Recv fields under the LAN's status display
 the amount of packets sent and received. Some packet loss is normal in
 wireless networking.

Figure 6-8

- **SSID.** The unique name shared among all points in your wireless network is displayed here.
- **Encryption Function.** The encryption method you chose in the Setup Wizard or changed from the Setup Tab of this Web-based Utility is displayed here.
- **Channel.** The wireless channel shared by all wireless devices connected to this Access Point is displayed here.
- **Send and Recv**. The Send and Recv fields under the Wireless's status display the amount of packets sent and received. Some packet loss is normal in wireless networking.

The Log Tab

To view a log of the Access Point's activity, select the "Log" tab, shown in Figure 6-9.

Figure 6-9

To enable logging activity, click the **Enable** radio button beside Access Log. The default setting for this function is **Disable**.

The Send Log to option designates from which PC you can view the log. Third party "View Log" software is required to take advantage of this option.

To view the log, click the **View Log** button.

Click the **Apply** button to apply your changes or **Cancel** to cancel your changes. If you require online help, click the **Help** button.

The Help Tab

For help on the various tabs in this Web-based Utility, along with upgrading the Access Point's firmware and viewing this User Guide, click the "Help" tab, shown in Figure 6-10.

The help files for the various tabs in this Web-based Utility are listed by tab name on the left hand side of the screen.

Figure 6-10

The following resources require an Internet connection in order to access them.

Click the **Linksys Website** link to connect to the Linksys homepage for Knowledgebase help files and information about other Linksys products.

For an **Online Manual in PDF format**, click that text link. The manual will appear in Adobe pdf format. If you do not have the Adobe PDF Reader installed on your computer, click the **Adobe Website** link or go to the Setup Wizard CD-ROM to download this software. To download from the CD-ROM, click the **Start** button and select **Run**. Type **D:\Acrobat** (where "D" is the letter of your CD-ROM drive).

Firmware can be upgraded by clicking the **Upgrade Firmware** link. Do not upgrade your firmware unless you are experiencing problems with the Access Point.

The Filter Tab

The "Filter" tab, shown in Figure 6-11, allows you to block or allow certain computers, by their MAC Address, from communicating with the Access Point.

To enable filtering of computers by their MAC Addresses, click the **Enable** radio button. To disable this feature, click the radio button by **Disable**.

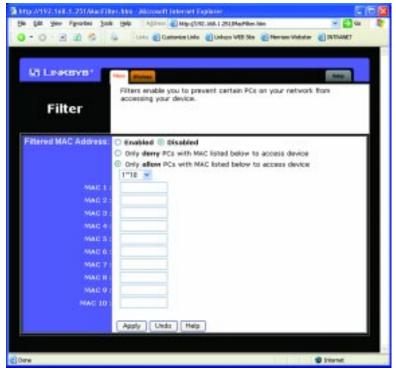


Figure 6-11

Next, determine if the Access Point will **deny** access only to the MAC addresses you will specify, OR if the Access Point will **allow** access only to the MAC Addresses you will specify. Click the radio button next to the option that is appropriate.

Above the MAC Address fields, there is a pull-down menu. This pull-down menu is for selecting the number of computers on your wireless network. For computers one through ten on your wireless network, 1~10 is selected by default. If you have more than ten computers on your wireless network, use this pull-down menu to select 11~20, 21~30, etc., up to a maximum of 50 MAC Addresses.

Then, type the MAC Address(es) you wish to filter in the MAC Address fields.

When you've completed making any changes on this tab, click the **Apply** button to save those changes or **Undo** to exit the Web-based Utility without saving changes. For more information on this tab, you can click the **Help** button.

The Wireless Tab

Figure 6-12

Before making any changes to the Wireless tab, shown in Figure 6-12, please check your wireless settings on other systems, as these changes will alter the effectiveness of the Access Point. In most cases, these settings do not need to be changed.

- **Beacon Interval.** This value indicates the frequency interval of the beacon. A beacon is a packet broadcast by the Access Point to keep the network synchronized. A beacon includes the wireless LAN service area, the AP address, the Broadcast destination addresses, a time stamp, Delivery Traffic Indicator Maps, and the Traffic Indicator Message (TIM).
- RTS Threshold. This value should remain at its default setting of 2,432.
 Should you encounter inconsistent data flow, only minor modifications are recommended.

- **Fragmentation Threshold.** This specifies the maximum size a data packet will be before splitting and creating a new packet and should remain at its default setting of 2,346. A smaller setting means smaller packets, which will create more packets for each transmission. Only minor modifications of this value are recommended.
- DTIM Interval. This value indicates the interval of the Delivery Traffic Indication Message (DTIM). A DTIM field is a countdown field informing clients of the next window for listening to broadcast and multicast messages. When the Access Point has buffered broadcast or multicast messages for associated clients, it sends the next DTIM with a DTIM Interval value. Access Point Clients hear the beacons and awaken to receive the broadcast and multicast messages.
- Transmission Rates. The basic transfer rates should be set depending on the speed of your wireless network. You must select 1-2 (MBps) if you have older 802.11 compliant equipment on your network, such as wireless adapters that support only 1 or 2 Mbps. Selecting 1-2 (MBps), however, does not limit the basic transfer rates of faster adapters.
- Preamble Type. The preamble defines the length of the CRC block for communication between the Access Point and a roaming Network Card. (High network traffic areas should use the shorter preamble type.) Select the appropriate preamble type and click the Apply button to set it. All wireless points (nodes) on your network should use the same preamble type.
- Authentication Type. You may choose between Open System, Shared Key, and Both. The Authentication Type default is set to Open System. Shared Key is when both the sender and the recipient share a secret key. All points on your network must use the same authentication type. It is recommended that you use the default setting.
- Antenna Selection. This selection is for choosing which antenna transmits data. By default, the Diversity Antenna selection, used to increase reception, is chosen.

 SSID Broadcast. For security purposes, this selection can be disabled, allowing only those wireless network cards with the Access Point's SSID to communicate with the Access Point. By default, this selection is enabled, allowing all wireless network cards in your wireless network to communicate with the Access Point.

Important: The Access Point will not be recognized by "site-survey" utilities, such as the Microsoft® Windows® XP Zero Configuration Utility, if SSID Broadcast is disabled.

When you've completed making any changes on this tab, click the **Apply** button to save those changes or **Cancel** to exit the Web-based Utility without saving changes. For more information on this tab, you can click the **Help** button.

Appendix A: Troubleshooting

This chapter provides solutions to problems usually encountered during the installation and operation of the Access Point. Read the description below to solve your problems. If you can't find an answer here, check the Linksys website at www.linksys.com.

Frequently Asked Questions

Can the Access Point act as my DHCP Server?

No. The Access Point is nothing more than a wireless hub, and as such, cannot be configured to handle DHCP capabilities.

Can I run an application from a remote computer over the wireless network?

This will depend on whether or not the application is designed to be used over a network. Consult the application's user guide to determine if it supports operation over a network.

Can I play multiplayer games with other users of the wireless network?

Yes, as long as the game supports multiple players over a LAN (local area network). Refer to the game's user guide for more information.

What is the IEEE 802.11b standard?

The IEEE 802.11b Wireless LAN standards subcommittee is formulating a standard for the industry. The objective is to enable wireless LAN hardware from different manufacturers to communicate.

What IEEE 802.11 features are supported?

The product supports the following IEEE 802.11 functions:

- CSMA/CA plus Acknowledge protocol
- Multi-Channel Roaming
- Automatic Rate Selection
- RTS/CTS feature
- Fragmentation
- Power Management

What is Ad-hoc?

An Ad-hoc wireless LAN is a group of computers, each with a WLAN adapter, connected as an independent wireless LAN. An Ad-hoc wireless LAN is applicable at a departmental scale for a branch or SOHO operation.

What is Infrastructure?

An integrated wireless and wired LAN is called an Infrastructure configuration. Infrastructure is applicable to enterprise scale for wireless access to a central database, or wireless application for mobile workers.

What is Roaming?

Roaming is the ability of a portable computer user to communicate continuously while moving freely throughout an area greater than that covered by a single Access Point. Before using the roaming function, the workstation must make sure that it is the same channel number as the Access Point of the dedicated coverage area.

To achieve true seamless connectivity, the wireless LAN must incorporate a number of different functions. Each node and Access Point, for example, must always acknowledge receipt of each message. Each node must maintain contact with the wireless network even when not actually transmitting data. Achieving these functions simultaneously requires a dynamic RF networking technology that links Access Points and nodes. In such a system, the user's end node undertakes a search for the best possible access to the system. First, it evaluates such factors as signal strength and quality, as well as the message load currently being carried by each Access Point and the distance of each Access Point to the wired backbone. Based on that information, the node next selects the right Access Point and registers its address. Communications between end node and host computer can then be transmitted up and down the backbone.

As the user moves on, the end node's RF transmitter regularly checks the system to determine whether it is in touch with the original Access Point or whether it should seek a new one. When a node no longer receives acknowledgment from its original Access Point, it undertakes a new search. Upon finding a new Access Point, it then re-registers, and the communication process continues.

What is BSS ID?

A specific Ad-hoc LAN is called a Basic Service Set (BSS). Computers in a BSS must be configured with the same BSS ID.

What is ESSID?

An Infrastructure configuration could also support roaming capability for mobile workers. More than one BSS can be configured as an Extended Service Set (ESS). Users within an ESS could roam freely between BSSs while maintaining a continuous connection to the wireless network stations and Access Points.

What is ISM band?

The FCC and their counterparts outside of the U.S. have set aside bandwidth for unlicensed use in the ISM (Industrial, Scientific and Medical) band. Spectrum in the vicinity of 2.4 GHz, in particular, is being made available worldwide. This presents a truly revolutionary opportunity to place convenient high speed wireless capabilities in the hands of users around the globe.

What is Spread Spectrum?

Spread Spectrum technology is a wideband radio frequency technique developed by the military for use in reliable, secure, mission-critical communications systems. It is designed to trade off bandwidth efficiency for reliability, integrity, and security. In other words, more bandwidth is consumed than in the case of narrowband transmission, but the trade-off produces a signal that is, in effect, louder and thus easier to detect, provided that the receiver knows the parameters of the spread-spectrum signal being broadcast. If a receiver is not tuned to the right frequency, a spread-spectrum signal looks like background noise. There are two main alternatives, Direct Sequence Spread Spectrum (DSSS) and Frequency Hopping Spread Spectrum (FHSS).

What is DSSS? What is FHSS? And what are their differences?

Frequency Hopping Spread Spectrum (FHSS) uses a narrowband carrier that changes frequency in a pattern that is known to both transmitter and receiver. Properly synchronized, the net effect is to maintain a single logical channel. To an unintended receiver, FHSS appears to be short-duration impulse noise. Direct Sequence Spread Spectrum (DSSS) generates a redundant bit pattern for each bit to be transmitted. This bit pattern is called a chip (or chipping code). The longer the chip, the greater the probability that the original data can be recovered. Even if one or more bits in the chip are damaged during transmission, statistical techniques embedded in the radio can recover the original data without the need for retransmission. To an unintended receiver, DSSS appears as low power wideband noise and is rejected (ignored) by most narrowband receivers.

Would the information be intercepted while transmitting on air?

WLAN features two-fold protection in security. On the hardware side, as with Direct Sequence Spread Spectrum technology, it has the inherent security feature of scrambling. On the software side, the WLAN series offers the encryption function (WEP) to enhance security and access control. Users can set it up depending upon their needs.

Can Instant Wireless[™] products support file and printer sharing?

Instant Wireless[™] products perform the same function as LAN products. Therefore, Instant Wireless[™] products can work with Netware, Windows NT/2000, or other LAN operating systems to support printer or file sharing.

What is WEP?

WEP is Wired Equivalent Privacy, a data privacy mechanism based on a 40 bit shared key algorithm, as described in the IEEE 802.11 standard.

What is a MAC Address?

The Media Access Control (MAC) address is a unique number assigned by the manufacturer to any Ethernet networking device, such as a network adapter, that allows the network to identify it at the hardware level. For all practical purposes, this number is usually permanent. Unlike IP addresses, which can change every time a computer logs on to the network, the MAC address of a device stays the same, making it a valuable identifier for the network.

Appendix B: Setting Up the TCP/IP Protocol

Setting Up TCP/IP in Windows

Before a computer can communicate with the Access Point, it must be configured with the TCP/IP protocol. If you know how to set up TCP/IP on your computers, do so now. Otherwise, use the guidelines below to help get TCP/IP installed on all of the computers that need to communicate with the Access Point. If you are unable to successfully install TCP/IP on one or more computers after following the directions, contact the manufacturer of your computers' network operating system for further assistance. Check with your network administrator for your TCP/IP settings.

The directions below provide general guidelines for coming up with IP addresses and subnet masks. Check with your network administrator to see if you need to use specific IP addresses or DHCP settings.

First, each computer on the network will require an IP address, which is a series of numbers, separated by periods, identifying the PC on the network. To make things simple, it is recommended you use the following numbering scheme:

192.168.1.X

In this example, X is a unique, arbitrarily assigned number from 1 to 254. Each computer must have its own unique X number. Note: Never use 0 or 255 for X. These numbers are reserved by TCP/IP for other uses.

For example, if you have three computers, you could number them as follows:

192.168.1.17

192.168.1.44

192.168.1.126

In this case, 17, 44, and 126 are arbitrary numbers between 1 and 254.

Each computer will also require a subnet mask, which is a numerical "filter" that tells a computer what kinds of TCP/IP data packets to accept. If you're not sure which mask to use, the following mask is recommended:

255.255.255.0

The following instructions are provided as examples for reference only. For complete instructions on installing and troubleshooting TCP/IP, consult your Windows operating system documentation.

TCP/IP Setup for Windows 95, 98, and Millennium

- Click the Start button, select Settings, and open the Control Panel. Inside the Control Panel, double-click the Network icon.
- 2. If the *TCP/IP Protocol* is listed for your network adapter, go to step five. Otherwise, click the **Add** button.
- When the Component Type window appears, select Protocol and click the Add button.
- 4. Select **Microsoft** in the Manufacturers list and choose **TCP/IP** in the Network Protocols list. Then, click the **OK** button.
- 5. When the Network window reappears, click **TCP/IP** and then click the **Properties** button.
- 6. Select **Specify an IP Address**.
- Enter an IP Address for the computer, along with a Subnet Mask. Click the OK button. If you do not have these values, consult your network administrator.
- 8. When the Network window reappears, click the **OK** button. Restart your machine. TCP/IP has now been successfully installed.

TCP/IP Setup for Windows NT 4.0

- Click the Start button, select Settings, and open the Control Panel. Inside the Control Panel, double-click the Network icon.
- When the Network window appears, click the Protocols tab. Then, click the Add button.
- 3. Find the **TCP/IP protocol** in the **Select Network Protocol** field. Click on it once and then click the **OK** button.
- 4. When asked if you want to use DHCP, choose No.
- 5. If asked to supply your Windows NT CD, do so. NT will copy the necessary files to your system. You may have to switch between the Access Point's Setup CD and the NT CD.
- 6. When TCP/IP appears in the **Network Protocols** window, click the **Bindings** tab. Windows will store your new bindings.
- 7. Click the **Protocols** tab. Then, select **TCP/IP**.
- 8. Click the **Properties** button. Select the type of network adapter you have from the Adapters box and select **Specify an IP Address**.
- 9. Enter the computer's IP Address and Subnet Mask. Check with your network administrator for your settings.
- 10. Enter your Default Gateway if you have one.

Note: a Default Gateway is not required. Check with your network administrator.

- 11. When you finish, click the **OK** button. If NT asks about WINS, ignore it.
- 12. When the **Network** window reappears, click the **Close** button. Restart your computer when prompted. TCP/IP has now been successfully installed.

TCP/IP Setup for Windows 2000

- 1. At the Windows 2000 desktop, right click **My Network Places**. Then, right click **Local Area Connection**. Choose **Properties**.
- 2. If the *TCP/IP Protocol* is listed for your network adapter, go to step five. Otherwise, click the **Install** button.
- When the Component Type window appears, select Protocol, and click the Install button.
- 4. Select **Internet Protocol** (**TCP/IP**) from the list and click the **OK** button.
- 5. When the **Network** window reappears, select **TCP/IP**, and click the **Properties** button.
- 6. Select Use the following IP Address.
- Enter an IP Address for the computer, along with a Subnet Mask and Default Gateway. Then, click the **OK** button. If you do not have these values, consult your network administrator.
- 8. When the Network window reappears, click the **OK** button. Restart your computer. TCP/IP has now been successfully installed.

Appendix C: Glossary

Adapter - Printed circuit board that plugs into a PC to add to capabilities or connectivity to a PC. In a networked environment, a network interface card is the typical adapter that allows the PC or server to connect to the intranet and/or Internet.

Ad-hoc Network - An ad-hoc network is a wireless network or other small network in which some of the network devices are part of the network only for the duration of a communications session while in some close proximity to the rest of the network.

Backbone - The part of a network that connects most of the systems and networks together and handles the most data.

Bandwidth - The transmission capacity of a given facility, in terms of how much data the facility can transmit in a fixed amount of time; expressed in bits per second (bps).

Beacon Interval - A beacon is a packet broadcast by the Access Point to keep the network synchronized. A beacon includes the wireless LAN service area, the AP address, the Broadcast destination addresses, a time stamp, Delivery Traffic Indicator Maps, and the Traffic Indicator Message (TIM).

Bit - A binary digit. The value - 0 or 1-used in the binary numbering system. Also, the smallest form of data.

Browser - A browser is an application program that provides a way to look at and interact with all the information on the World Wide Web or PC. The word "browser" seems to have originated prior to the Web as a generic term for user interfaces that let you browse text files online.

BSS (Basic Service Set) - A group of wireless Network PC Card users and an Access Point.

Buffer - A buffer is a shared or assigned memory area used by hardware devices or program processes that operate at different speeds or with different sets of priorities. The buffer allows each device or process to operate without being held up by the other. In order for a buffer to be effective, the size of the buffer and the algorithms for moving data into and out of the buffer need to be

considered by the buffer designer. Like a cache, a buffer is a "midpoint holding place" but exists not so much to accelerate the speed of an activity as to support the coordination of separate activities.

CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance) - In local area networking, this is the CSMA technique that combines slotted time-division multiplexing with carrier sense multiple access/collision detection (CSMA/CD) to avoid having collisions occur a second time. This works best if the time allocated is short compared to packet length and if the number of situations is small.

CSMA/CD (Carrier Sense Multiple Access/Collision Detection) - The LAN access method used in Ethernet. When a device wants to gain access to the network, it checks to see if the network is quiet (senses the carrier). If it is not, it waits a random amount of time before retrying. If the network is quiet and two devices access the line at exactly the same time, their signals collide. When the collision is detected, they both back off and each wait a random amount of time before retrying.

Database - A database is a collection of data that is organized so that its contents can easily be accessed, managed, and updated.

DHCP (**D**ynamic **H**ost **C**onfiguration **P**rotocol) - A protocol that lets network administrators manage centrally and automate the assignment of Internet Protocol (IP) addresses in an organization's network. Using the Internet's set of protocol (TCP/IP), each machine that can connect to the Internet needs a unique IP address. When an organization sets up its computer users with a connection to the Internet, an IP address must be assigned to each machine. Without DHCP, the IP address must be entered manually at each computer and, if computers move to another location in another part of the network, a new IP address must be entered. DHCP lets a network administrator supervise and distribute IP addresses from a central point and automatically sends a new IP address when a computer is plugged into a different place in the network.

DHCP uses the concept of a "lease" or amount of time that a given IP address will be valid for a computer. The lease time can vary depending on how long a user is likely to require the Internet connection at a particular location. It's especially useful in education and other environments where users change frequently. Using very short leases, DHCP can dynamically reconfigure networks in which there are more computers than there are available IP addresses. DHCP supports static addresses for computers containing Web servers that need a permanent IP address.

Download - To receive a file transmitted over a network. In a communications session, download means receive, upload means transmit.

Driver - A workstation or server software module that provides an interface between a device and the upper-layer protocol software running in the computer; it is designed for a specific device, and is installed during the initial installation of a network-compatible client or server operating system.

DSSS (Direct-Sequence Spread-Spectrum) - DSSS generates a redundant bit pattern for each bit to be transmitted. This bit pattern is called a chip (or chipping code). The longer the chip, the greater the probability that the original data can be recovered. Even if one or more bits in the chip are damaged during transmission, statistical techniques embedded in the radio can recover the original data without -the need for retransmission. To an unintended receiver, DSSS appears as low power wideband noise and is rejected (ignored) by most narrowband receivers.

DTIM (**D**elivery Traffic Indication Message) - A DTIM field is a countdown field informing clients of the next window for listening to broadcast and multicast messages. When the AP has buffered broadcast or multicast messages for associated clients, it sends the next DTIM with a DTIM Interval value. AP Clients hear the beacons and awaken to receive the broadcast and multicast messages.

Dynamic IP Address - An IP address that is automatically assigned to a client station in a TCP/IP network, typically by a DHCP server. Network devices that serve multiple users, such as servers and printers, are usually assigned static IP addresses.

Encryption - A security method that applies a specific algorithm to data in order to alter the data's appearance and prevent other devices from reading the information.

ESS - More than one BSS in a network.

Ethernet - IEEE standard network protocol that specifies how data is placed on and retrieved from a common transmission medium. Has a transfer rate of 10 Mbps. Forms the underlying transport vehicle used by several upper-level protocols, including TCP/IP and XNS.

FHSS (Frequency Hopping Spread Spectrum) - FHSS continuously changes the center frequency of a conventional carrier several times per second according to a pseudo-random set of channels, while chirp spread spectrum changes the carrier frequency. Because a fixed frequency is not used, illegal monitoring of spread spectrum signals is extremely difficult, if not downright impossible depending on the particular method.

Firmware - Programming that is inserted into programmable read-only memory (programmable read-only memory), thus becoming a permanent part of a computing device.

Fragmentation - Breaking a packet into smaller units when transmitting over a network medium that cannot support the original size of the packet.

Gateway - A device that interconnects networks with different, incompatible communications protocols.

Hardware - Hardware is the physical aspect of computers, telecommunications, and other information technology devices. The term arose as a way to distinguish the "box" and the electronic circuitry and components of a computer from the program you put in it to make it do things. The program came to be known as the software.

Hub - The device that serves as the central location for attaching wires from workstations. Can be passive, where there is no amplification of the signals; or active, where the hubs are used like repeaters to provide an extension of the cable that connects to a workstation.

IEEE (The **I**nstitute of **E**lectrical and **E**lectronics **E**ngineers) - The IEEE describes itself as "the world's largest technical professional society, promoting the development and application of electrotechnology and allied sciences for the benefit of humanity, the advancement of the profession, and the well-being of our members."

The IEEE fosters the development of standards that often become national and international standards. The organization publishes a number of journals, has many local chapters, and several large societies in special areas, such as the IEEE Computer Society.

Infrastructure - An infrastructure network is a wireless network or other small network in which the wireless network devices are made a part of the network through the Access Point which connects them to the rest of the network.

IP Address - In the most widely installed level of the Internet Protocol (Internet Protocol) today, an IP address is a 32-binary digit number that identifies each sender or receiver of information that is sent in packet across the Internet. When you request an HTML page or send e-mail, the Internet Protocol part of TCP/IP includes your IP address in the message (actually, in each of the packets if more than one is required) and sends it to the IP address that is obtained by looking up the domain name in the Uniform Resource Locator you requested or in the e-mail address you're sending a note to. At the other end, the recipient can see the IP address of the Web page requestor or the e-mail sender and can respond by sending another message using the IP address it received.

ISM band - The FCC and their counterparts outside of the U.S. have set aside bandwidth for unlicensed use in the ISM (Industrial, Scientific and Medical) band. Spectrum in the vicinity of 2.4 GHz, in particular, is being made available worldwide. This presents a truly revolutionary opportunity to place convenient high-speed wireless capabilities in the hands of users around the globe.

LAN - A local area network (LAN) is a group of computers and associated devices that share a common communications line and typically share the resources of a single processor or server within a small geographic area (for example, within an office building).

MAC (Media Access Control) Address - A unique number assigned by the manufacturer to any Ethernet networking device, such as a network adapter, that allows the network to identify it at the hardware level.

Mbps (MegaBits Per Second) - One million bits per second; unit of measurement for data transmission.

Multicasting - Sending data to a group of nodes instead of a single destination.

Network - A system that transmits any combination of voice, video and/or data between users.

Node - A network junction or connection point, typically a computer or work station.

Packet - A unit of data routed between an origin and a destination in a network.

Passphrase - Used much like a password, a passphrase simplifies the WEP encryption process by automatically generating the WEP encryption keys for Linksys products.

PC Card - A credit-card sized removable module that contains memory, I/O, or a hard disk.

Port - A pathway into and out of the computer or a network device such as a switch or router. For example, the serial and parallel ports on a personal computer are external sockets for plugging in communications lines, modems and printers.

RJ-45 (Registered Jack-45) - A connector similar to a telephone connector that holds up to eight wires, used for connecting Ethernet devices.

Roaming - The ability to use a wireless device and be able to move from one access point's range to another without losing the connection.

Router - Protocol-dependent device that connects subnetworks together. Routers are useful in breaking down a very large network into smaller subnetworks; they introduce longer delays and typically have much lower throughput rates than bridges.

RTS (Request To Send) - An RS-232 signal sent from the transmitting station to the receiving station requesting permission to transmit.

Server - Any computer whose function in a network is to provide user access to files, printing, communications, and other services.

Software - Instructions for the computer. A series of instructions that performs a particular task is called a "program." The two major categories of software are "system software" and "application software." System software is made up of control programs such as the operating system and database management system (DBMS). Application software is any program that processes data for the user.

A common misconception is that software is data. It is not. Software tells the hardware how to process the data.

SOHO (Small Office/Home Office) - Market segment of professionals who work at home or in small offices.

Spread Spectrum - Spread Spectrum technology is a wideband radio frequency technique developed by the military for use in reliable, secure, mission-critical communications systems. It is designed to trade off bandwidth efficiency for reliability, integrity, and security. In other words, more bandwidth is consumed than in the case of narrowband transmission, but the trade off produces a signal that is, in effect, louder and thus easier to detect, provided that the receiver knows the parameters of the spread-spectrum signal being broadcast. If a receiver is not tuned to the right frequency, a spread-spectrum signal looks like background noise. There are two main alternatives, Direct Sequence Spread Spectrum (DSSS) and Frequency Hopping Spread Spectrum (FHSS).

SSID (Service Set Identifier) - A unique name shared among all points in a wireless network. The SSID must be identical for each point in the wireless network and is case-sensitive. Also known as "ESSID."

Static IP Address - A permanent IP address that is assigned to a node in an IP or a TCP/IP network.

Subnet Mask - The method used for splitting IP networks into a series of subgroups, or subnets. The mask is a binary pattern that is matched up with the IP address to turn part of the host ID address field into a field for subnets.

Switch - 1. A data switch connects computing devices to host computers, allowing a large number of devices to share a limited number of ports. 2. A device for making, breaking, or changing the connections in an electrical circuit.

TCP (Transmission Control Protocol) - A method (protocol) used along with the Internet Protocol (Internet Protocol) to send data in the form of message units between computers over the Internet. While IP takes care of handling the actual delivery of the data, TCP takes care of keeping track of the individual units of data (called packet) that a message is divided into for efficient routing through the Internet.

TCP/IP (Transmission Control Protocol/Internet Protocol) - The basic communication language or protocol of the Internet. It can also be used as a communications protocol in a private network (either an intranet or an extranet). When you are set up with direct access to the Internet, your computer is provided with a copy of the TCP/IP program just as every other computer that you may send messages to or get information from also has a copy of TCP/IP.

Throughput - The amount of data moved successfully from one place to another in a given time period.

Topology - A network's topology is a logical characterization of how the devices on the network are connected and the distances between them. The most common network devices include hubs, switches, routers, and gateways. Most large networks contain several levels of interconnection, the most important of which include edge connections, backbone connections, and wide-area connections.

Upgrade - To replace existing software or firmware with a newer version.

Upload - To transmit a file over a network. In a communications session, upload means transmit, download means receive.

UTP - Unshielded twisted pair is the most common kind of copper telephone wiring. Twisted pair is the ordinary copper wire that connects home and many business computers to the telephone company. To reduce crosstalk or electromagnetic induction between pairs of wires, two insulated copper wires are twisted around each other. Each signal on twisted pair requires both wires. Since some telephone sets or desktop locations require multiple connections, twisted pair is sometimes installed in two or more pairs, all within a single cable.

WEP (Wired Equivalent Privacy) - A data privacy mechanism based on a 64-bit, 128-bit, or 256-bit shared key algorithm, as described in the IEEE 802.11 standard.

Appendix D: Specifications

Standards: IEEE 802.3 (10BaseT), IEEE 802.3u (100BaseTX)

IEEE 802.11b (Wireless)

Channels: 11 Channels (US, Canada)

13 Channels (Europe) 14 Channels (Japan)

Ports: One 10/100 RJ-45 Port

Cabling Type: UTP Category 5 or better

Operating Range

(Wireless): Up to 300 ft. (97 m)

Outdoors: Up to 1500 ft. (457 m)

Data Rate: Up to 11Mbps (Wireless), 10/100Mbps (Ethernet)

LEDs: Power, Act, Link (Wired - Link/Activity)

1.1 General

Emission Type: Direct Sequence Spread Spectrum (DSSS)

RF Frequency: 2471MHz - 2497MHz - Japan

2400MHz - 2483.5MHz - North America, Europe,

Korea and Extended Japan 2455MHz - 2475MHz - Spain 2446.5MHz - 2483.5MHz - France

Radio Chipset: RFMD

MAC Controller: TI ACX100 w/BBP

Power Output: 20 dBm

1.2 Transmitter

Frequency Stability: Within + 25 ppm

Data Modulation Type: BPSK (1/5.5Mbps) / QPSK (2/11 Mbps)

CCK (5.5/11 Mbps)

1.3 Power

Power Voltage: DC 5.0 Volt + 5%, AC Adapter AC 20V

Power Consumption: 5.0 Volt, 2.0A (Typical)

Environmental

Dimensions: 7.31" x 6.16" x 1.88" (186mm x 154mm x 48mm)

Unit Weight: 20.5 oz. (0.58 kg)

Power: 5V, 550mA Tx, 230mA Rx

Certifications: FCC Class C, CE Mark

Operating Temp.: 0°C to 55°C (32°F to 131°F)

Storage Temp.: 0°C to 70°C (32°F to 158°F)

Operating Humidity: 0% to 70% Non-Condensing

Storage Humidity: 0% to 95% Non-Condensing

Appendix E: Warranty Information

BE SURE TO HAVE YOUR PROOF OF PURCHASE AND A BARCODE FROM THE PRODUCT'S PACKAGING ON HAND WHEN CALLING. RETURN REQUESTS CANNOT BE PROCESSED WITHOUT PROOF OF PURCHASE.

IN NO EVENT SHALL LINKSYS'S LIABILITY EXCEED THE PRICE PAID FOR THE PRODUCT FROM DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OF THE PRODUCT, ITS ACCOMPANYING SOFTWARE, OR ITS DOCUMENTATION. LINKSYS DOES NOT OFFER REFUNDS FOR ANY PRODUCT.

LINKSYS OFFERS CROSS SHIPMENTS, A FASTER PROCESS FOR PROCESSING AND RECEIVING YOUR REPLACEMENT. LINKSYS PAYS FOR UPS GROUND ONLY. ALL CUSTOMERS LOCATED OUTSIDE OF THE UNITED STATES OF AMERICA AND CANADA SHALL BE HELD RESPONSIBLE FOR SHIPPING AND HANDLING CHARGES. PLEASE CALL LINKSYS FOR MORE DETAILS.

Appendix F: Contact Information

For help with the installation or operation of this product, contact Linksys Technical Support at one of the phone numbers or Internet addresses below.

Sales Information 800-546-5797 (LINKSYS)

 Technical Support
 800-326-7114

 RMA Issues
 949-271-5461

 Fax
 949-265-6655

Email support@linksys.com
Web http://www.linksys.com

FTP Site ftp.linksys.com

46 47

http://www.linksys.com

© Copyright 2002 Linksys, All Rights Reserved.